COST Action TU0601 Robustness of Structures

WG2 Modelling of exposures and vulnerability

Activity 5 Structural behaviour models

General aspects, modelling and analysis

L. Kwasniewski, T. Vrouwenvelder, B.A. Izzudin, M. Gizejowski

Modeling, verification and validation

Before beginning structural modeling

objectives

reality of interest (physical model)

quantities of interest

General objectives of robustness analysis:

Estimate potential for progressive collapse (evaluation)

Mitigate effects of disproportional damage (improvement)

Structural models serving for:

Design – simplified procedures, flowcharts, elimination of Single Point Failure Mechanism (*simplicity*)

Robustness analysis – repeated calculations, probabilistic simulations (*efficiency*)

Research oriented – verification of procedures, reference material, case studies (*accuracy*)

Existing building

Designed structure (concept)

Structural element (e.g. frame)

Quantities of interest:

Internal forces after local damage

Extent of secondary damage

Overall structural behavior after primary failure (stresses, strain, displacements, energies)

Three aspects:

loading configurations including abnormal loads

global failure criteria quantitatively defining the collapse phenomenon

adequate analysis methods

EN 1990 Basis of Design

Accidental design situation

$$\sum_{j\geq 1} G_{k,j} + P_k + A_d + (\psi_{1,1} \text{ or } \psi_{2,1})Q_{k,1} + \sum_{i>1} \psi_{2,i}Q_{k,i} \quad (6.11b)$$

- G = permanent action
- Q = variable action
- A = accidental action
- P = prestressing

	ψ_0	ψ_1	ψ_2
Imposed loads in buildings, category			
Category A : residence	0,7	0,5	0,3
Category B : office	0,7	0,5	0,3
Category C : congregation	0,7	0,7	0,6
Category D : shops	0,7	0,7	0,6
Category E : storage	1,0	0,9	0,8
Category F : vehicles ≤ 30 kN	0,7	0,7	0,6
Category G :vehicles 30-160 kN	0,7	0,5	0,3
Category H :roofs	0	0	0
Snow	0,5	0,5	0
Wind	0,62	0,2	0
Temperature	0,6	0,5	0

General Services Administration (GSA) (2000) U.S. Department of Defense (DoD) (2002)

> Static analysis Load = 2(DL + 0.25LL)

Dynamic analysis Load = DL + 0.25LL

DL = dead load LL = live load

abnormal loading:

notional removal of major bearing structural elements threat independent approach

Recommended exterior and interior locations of notionally removed columns (GSA, 2000)

Global failure criteria

quantitatively defining the collapse phenomenon

(GSA, 2000) smaller of the following two areas:

• the area limited to structural bays directly associated with the instantaneously removed vertical member and located directly above the removed member,

• 167 m2 (1,800 ft2) at the floor level directly above the instantaneously removed vertical member.

Analysis methods - categorization

Linear vs. Nonlinear

Static vs. Dynamic

Space discretization

Component level – multilevel strategy – global analysis

Analysis methods

Linear behavior (analysis):

response proportional to the cause

Sources of nonlinearities:

Material behavior (material nonlinearity) Large deformations (geometric nonlinearities) Loading – change of direction and application point Boundary conditions

Analysis methods

Smooth nonlinearities

e.g. nonlinear strain-displacement equations, nonlinear elasticity, follower pressures smooth at local level – global level can be not smooth (e.g. buckling, snapping) continuous relations - equations incremental-iterative methods

Rough nonlinearities

local response is nonsmooth (flow-rule plasticity, contact, friction) Inequalities, often history dependent numerical problems incremental methods

Static vs. Dynamic

Static analysis

inertial forces are ignored, history time-like parameter

Quasi-static analysis

inertial forces neglected real-time measure foundation settlement, creep deformation, rate-dependent plasticity

Dynamic analysis

inertial forces damping rate effects (strain rate effects) actual time (time derivatives) stabilizing effect of inertial forces for nonlinear and discontinuous problems

Explicit versus Implicit Time Integration

Implicit time integrators

inertial problems relatively long response time incremental-iterative smaller number of more computationally expensive cycles rough nonlinearities – convergence problems

Explicit versus Implicit Time Integration

Explicit time integration

dynamic transient problems stress wave propagation captured rough nonlinearities large deformations grow rapidly purely incremental methods central difference method very small time steps large number of less expensive integration cycles numerical instabilities, e.g. hourglass modes mass scaling shock effects - viscous global damping

Space discretization

Finite Element Method (MES) - dominant

beam element models dominate

considerations are mosty confined to 2D subsystems

multilevel strategy: subsystem or component level simplified global model

Marjanishvili evaluated four successively more sophisticated analysis:

linear-elastic static nonlinear static linear-elastic dynamic nonlinear dynamic

The nonlinear time history (dynamic) analysis:

is recognized as giving the most realistic results

due to its high complexity, it is prone to incorrect assumptions and modeling errors

Marjanishvili SM. Progressive analysis procedure for progressive collapse. J Perform Constructed Facilities ASCE 2004; 18(2):79–85.

Table 1. Analysis Procedures Summary

Analysis procedures	Advantages	Disadvantages	Limitations	Steps required to perform the analysis	Performance evaluation criteria
Linear-elastic static analysis	 Relative simplicity Calculations done quickly Easy to perform Easy to evaluate and validate results 	 Does not consider dynamic effects Does not consider material nonlinearity 	 Analysis of complex structures cannot be evaluated with confidence Limited to simple structures with predictable behavior 	 Build computer model Perform static analysis Perform stability analysis Verify, validate, and evaluate the results 	Very conservative
Nonlinear static analysis	1. Includes material nonlinear behavior	 Does not consider dynamic effects Relative complexity Could be time consuming Leads to overly conservative results 	 Limited to relatively simple structures with predictable behavior Cannot be effectively used for progressive collapse analysis 	 Build computer model Perform stability analysis Estimate element capacities and force-displacement relationship Perform nonlinear static analysis Verify, validate, and evaluate the results 	Very conservative
Linear-elastic dynamic analysis	1. Includes dynamic behavior	 Does not account for material nonlinear behavior Could be time consuming for large computer models Moderate complexity Requires additional calculations to obtain time-step and internal forces Dynamic amplification, inertia and damping forces may be incorrectly calculated for structures that exhibit large plastic deformations 	 Limited to structures that do not exhibit large plastic deformations 	 Build computer model Perform static analysis to determine internal forces Determine "at rest" force distribution Estimate load time step Perform time history analysis Verify, validate, and evaluate the results 	Conservative for structures that exhibit nearly elastic behavior and could become nonconservative for structures that exhibit large plastic deformations
Nonlinear dynamic analysis	 Provides most realistic results Includes dynamic behavior Includes material nonlinear behavior 	 Could be very time consuming Requires extensive verification and validation of findings Hard to evaluate the results. In most of the cases the results of nonlinear dynamic analysis have to be verified and validated independently. Independent peer review analysis, alternate modeling, and sensitivity studies could validate the accuracy of the analyses. High complexity Incorrect assumptions or incorrect modeling much ded to empraneum such 	 Nonlinear time history analysis can be very time consuming, which may limit the number of nonlinearities in order to reduce the model and subsequently the computation time 	 Build computer model Determine "at rest" force distribution Perform stability analysis Estimate load time step Estimate element capacities and force-displacement relationship Perform nonlinear time history analysis Verify, validate, and evaluate the results Perform validation and various sensitivity studies to verify the results 	Most realistic

Marjanishvili SM. Progressive analysis procedure for progressive collapse. J Perform Constructed Facilities ASCE 2004; 18(2):79–85.

Multistory buildings

Design-oriented methodology

Multilevel approach - three stages: nonlinear static response of the damaged structure under gravity loading,

simplified dynamic assessment to establish methods by seudo static curves,

ductility assessment of the connections

ADAPTIC Beam FE models Component-based approach applied to the joints

Izzuddin BA, Vlassis AG, Elghazouli AY, Nethercot DA. Progressive collapse of multi-storey buildings due to sudden column loss -Part I & II, Engineering Structures 2008.

Chorzow Trade Hall roof collapse under snow loads in 2006

Implicit dynamic analysis

Global model

Beam and shell element model

ABAQUS

Lutomirski, S. Kwasniewski, L. Kozyra, Z. Winnicki, A. Failure analysis of Chorzów Trade Hall roof collapse. 23rd Conference "Structural Failures". Szczecin – Miedzyzdroje, Poland, 2007

Multistory building (Cardington Large Building Test Facility) Explicit transient dynamic analysis Sheel elemnts – local effects 3D models of beams and columns Global model LS-DYNA

Kwasniewski, L. Nonlinear dynamic simulations of progressive collapse for a multistory building, 3rd WG Meetings March 2-3, 2009, Coimbra, Portugal

SUMMARY

Tendencies:

Commercial nonlinear FE programs

Beam element models dominate

2D subsystems

Both static and dynamic

Multilevel strategy

Recommendation:

At the current stage different research paths should be explored

